UNDERSTANDING CIRCLE THEOREMS-PART ONE.

Common terms:

- (a) **ARC-** Any portion of a circumference of a circle.
- (b) **CHORD-** A line that crosses a circle from one point to another. If this chord passes through the centre then it is referred to as a diameter
- (c) A TANGENT- A line that touches a circle at only one point.

Theorem 1.

The angle subtended at the centre of a circle is twice the angle subtended at the circumference by the same arc.

Theorem 2.

Angles subtended by an arc in the same segment of a circle are equal.

Example 1.

Given PQO = 65°

Find QRP

Triangle OQP is isosceles (OP = OQ, the radii)

:. OPQ = 65° :. QOP = $180^{\circ} - (65^{\circ} + 65^{\circ})$ (angle sum of a triangle) = 50°

:. QRP = 25° (half of angle at the centre).

Given that angle BDC = 78° and DCA = 56° . Find angles BAC and DBA. **Solution**: BAC = BDC = 78° . (both subtended by arc BC)

 $DBA = DCA = 56^{\circ}$. (both subtended by arc AD)

Theorem3.

The opposite angles in a cyclic quadrilateral add up to 180⁰ (the angles are supplementary).

ABCD is a cyclic quadrilateral because all its vertices touch the circumference of the circle.(ABCO is not cyclic because O is not at the circumference).

Proof:

OA and OC are radii. Let angle ADC = dand angle ABC = b

AOC obtuse = 2d (angles at the centre)

AOC reflex = 2b (angles at the centre)

 $2d + 2b = 360^{\circ}$ (angles at a point) :.

 $d + b = 180^{\circ}$ as required :.

Example3.

 $a = 180^{0} - 98^{0}$ (opposite angles of a cyclic quadrilateral)

:.
$$a = 82^{\circ}$$

 $x + 4x = 180^{\circ}$ (opposite angles of a cyclic quadrilateral

$$5x = 180^{\circ}$$

 $x = 72^{\circ}$

- *Exercise*. 1.ABCD is a quadrilateral inscribed in circle, centre O, and AD is a diameter of the circle. If angle $CDB = 46^{\circ}$ and $ADB = 31^{\circ}$. Calculate
 - (a) the angle ABC (b) the angle BCD (c) the angle BAD.
 - 2. A circle has a radius of 155mm .AB is a chord of this circle which is 275mm long. What angle does AB subtend at the circumference of the circle.
 - 3. Given angle $XWZ = 20^{\circ}$, angle $WZY = 80^{\circ}$ and O is the centre of the circle (a) Find angle WXY
 - (b) Show that WY bisects XWZ

Theorem 4.

The angle between a tangent and the radius drawn to the point of contact is 90°

Line ABC is a tangent and angle ABO = 90°

Example 4. Find the angle BCO and angle BOC.

$$4a + a + 90^{0} = 180^{0}$$

 $5a = 90^{0}$
 $a = 18^{0}$.
Angle BCO = 18^{0} and BOC = $4 \ge 18^{0} = 72^{0}$.

UNDERSTANDING CIRCLE THEOREMS – PART TWO.

<u>Theorem 5.</u>

The tangents to a circle originating from a common point are equal in length.

<u>Theorem 6.</u>

The Alternate segment theorem.

The angle between a tangent and chord through the point of contact is equal to the angle subtended by the chord in the alternate segment.

angle TAB = angle BCA and angle SAC = angle CBA

a)
$$\triangle$$
 TBA is isosceles (TA = TB) ,angle TAB = angle TBA.
:. TBA = $\frac{1}{2}$ (180 - 80)
= 50⁰
b) OBT = 90⁰ (tangent and radius)
OBA = 90⁰ - 50⁰
= 40⁰.
c) ACB = ABT (alternate segment theorem)
ACB = 50⁰

В

Theorem 7. **Intersecting chords theorem**

Proof:

In triangles AXC and BXD:

Angle ACX = angle DBX (same segment)

Angle CAX = angle BDX (same segment)

:. The triangles AXC and BXD are similar.

 $\underline{AX} = \underline{CX}$

DX BX

Thus **AX.BX = CX.DX**

Exercise.

Find x

Theorem 8. The intersecting secants theorem.

Using triangles BXD and AXC;

Angle XAC = angle XDB, angle XCA =angle XBD.(Figure BACD is a cyclic quadrilateral).Thus triangles AXC and BXD have equal angles and are similar.

 $\frac{AX}{DX} = \frac{CX}{BX}$

Thus **AX.BX = CX.DX (This is the intersecting secants theorem)**

Theorem 9.

The secant/tangent theorem.

Angle BCT = angle BAC(alternate segment theorem). Triangles ATC and BTC share angle T and are similar triangles. (when triangles have two angles equal then they are similar.

In the triangles,

<u>AT</u> = <u>TC</u> ;**AT.BT** = **TC**²(**This is the secant/tangent theorem).** TC BT

Example 2.

Solution: $4 \ge 9 = x \cdot (9 + x)$ $36 = 9x + x^{2}$. $x^{2} + 9x - 36 = 0$ $x^{2} + 12x - 3x - 36 = 0$ x(x + 12) - 3(x + 12) = 0(x - 3)(x + 12) = 0; x = 3 or x = -12.

Since x cannot be negative then $\underline{x = 3 \text{ cm.}}$ *Example 3*.

Exercise.

1. Two chords of a circle KL and MN intersect at X, and KL is produced to T. Given that

KX = 6cm, XL = 4cm, MX = 8cm and LT = 8cm. calculate

a) NX

- b) The length of the tangent from T to the circle
- c) The ratio of the \underline{a} reas of $\underline{K} \underline{X} \underline{M}$ to $\underline{L} \underline{X} \underline{N}$.

6cm xcm (x+1)cm

3. Chords AB and BC of a circle are produced to meet outside the circle at T. a tangent is drawn from T to touch the circle at E. Given AB = 5cm, BT = 4cm and DC = 9cm,

Calculate

a) CT b) TE

c) the ratio of the areas of ~~ Δ ADT to ~ Δ BCT

d) the ratio of the areas of $\ \Delta$ BET to $\ \Delta$ AET